Search results for "Limited diffusion equations"

showing 3 items of 3 documents

A Fisher–Kolmogorov equation with finite speed of propagation

2010

Abstract In this paper we study a Fisher–Kolmogorov type equation with a flux limited diffusion term and we prove the existence and uniqueness of finite speed moving fronts and the existence of some explicit solutions in a particular regime of the equation.

Entropy solutionsPartial differential equationDiffusion equationApplied MathematicsMathematical analysisFlux limited diffusion equationsReaction–diffusion equationsFront propagationReaction–diffusion systemFisher–Kolmogorov equationFokker–Planck equationUniquenessDiffusion (business)Convection–diffusion equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Some regularity results on the ‘relativistic’ heat equation

2008

AbstractWe prove some partial regularity results for the entropy solution u of the so-called relativistic heat equation. In particular, under some assumptions on the initial condition u0, we prove that ut(t) is a Radon measure in RN. Moreover, if u0 is log-concave inside its support Ω, Ω being a convex set, then we show the solution u(t) is also log-concave in its support Ω(t). This implies its smoothness in Ω(t). In that case we can give a simpler characterization of the notion of entropy solution.

Flux limited diffusion equationsEntropy solutionsApplied MathematicsHeat equationMathematical analysisRadon measureConvex setInitial value problemHeat equationAnalysisMathematicsJournal of Differential Equations
researchProduct

Fronts propagating with signal dependent speed in limited diffusion and related Hamilton-Jacobi formulations

2021

We consider a class of limited diffusion equations and explore the formation of diffusion fronts as the result of a combination of diffusive and hyperbolic transport. We analyze a new class of Hamilton-Jacobi equations arising from the convective part of general Fokker-Planck equations ruled by a non-negative diffusion coefficient that depends on the unknown and on the gradient of the unknown. We explore the main features of the solution of the Hamilton-Jacobi equations that contain shocks and propose a suitable numerical scheme that approximates the solution in a consistent way with respect to the solution of the associated Fokker-Planck equation. We analyze three model problems covering d…

ConvectionNumerical AnalysisDarcy's lawNumerical approximationApplied MathematicsMathematical analysisFunction (mathematics)Hamilton–Jacobi equationComputational MathematicsLimited diffusion equationsPiecewiseHeat equationDiffusion (business)Constant (mathematics)Hamilton-Jacobi equationsViscosity solutions with shocksMathematics
researchProduct